Surname	Centre Number	Candidate Number
First name(s)		2

GCE A LEVEL

1400U50-1E

FRIDAY, 3 MAY 2024 - MORNING

BIOLOGY – A2 unit 5 Practical Examination Practical Analysis Task

1 hour

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	20	
2.	10	
Total	30	

ADDITIONAL MATERIALS

A calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Pencil may be used to draw tables and graphs.

Write your name, centre number and candidate number in the spaces at the top of this page.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. The maximum mark for this paper is 30.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

3

Image 1.1

Students carried out an investigation to assess the biodiversity along a 12m stretch of a river whose source is found within the country park. The students carried out kick sampling at five points, in shallow water along the riverbed, collecting samples from within each quadrat area only.

4000301E

© WJEC CBAC Ltd. (1400U50-1E) Turn over.

Image 1.2 shows the position of quadrats placed along a 12 m stretch of the riverbed during the kick sampling process.

Image 1.2

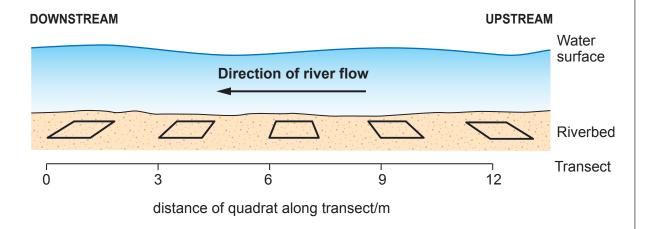
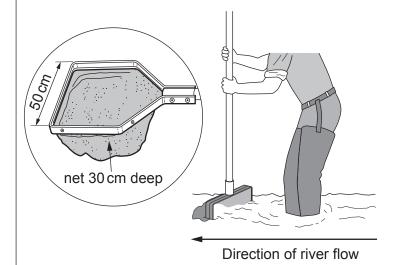



Image 1.3

A basic method used to collect the organisms in the river is described below:

- 1. Place five (0.5 m × 0.5 m) quadrats at 3 m intervals along the riverbed as seen in **Image 1.2**.
- 2. Place the flat edge (bottom) of the net on the riverbed on the downstream edge of the quadrat.
- 3. Kick into the stones/mud inside the quadrat, as seen in **Image 1.3**, for 30 seconds.
- 4. Empty the contents of the net into a tray containing river water.
- 5. Identify, count, and record the number of individuals from each different species caught in the net.
- 6. Return the organisms to the river safely.

PMT

rat. [1]	
ore	
[1]	
st [2]	

Turn over.

			$\neg r$
(a)	(i)	State two variables that were controlled in this investigation. [2]]]
	(ii)	Explain why the students placed the net on the downstream edge of the quadrat. [1]]
	(iii)	Explain why collecting several samples along the 12 m stretch of riverbed is more representative of the biodiversity present than a single sample. [1]	
(b)		tify one hazard associated with investigating biodiversity in the river and suggest you would minimise the risk by completing the risk assessment below. [2]	

Hazard	Risk	Control measure

© WJEC CBAC Ltd. (1400U50-1E)

PMT

(c) (i) The results for the kick sampling of the river can be seen in **Table 1.4**.

Table 1.4

Organism	n	n – 1	n (n–1)
Dragonfly nymph	47	46	2162
Mayfly nymph	40	39	1560
Freshwater shrimp	22	21	462
Caddisfly larvae	14	13	182
Bloodworm	8	7	56
Damselfly nymph	23	22	506
Flatworm	6	5	30
Frog (tadpole)	24	23	552
Minnow	9	8	72
Aquatic beetle	12	11	132
Stonefly nymph	7	6	42
	N = 212		Σn(n-1) =
	N(N-1) =		

The formula for calculating the Simpson's Diversity Index can be seen below. Where: N = number of organisms sampled; n = number of individuals of each species.

$$D=1-\frac{\Sigma n\;(n-1)}{N\;(N-1)}$$

Complete **Table 1.4 and** use the formula above to calculate the Simpson's Diversity Index for the river. **Give your answer to two decimal places.**

Simpson's Diversity Index =

[3]

(ii) 	Using your answer to (c)(i), state a conclusion for the level of biodiversity in the river. Explain how you reached your conclusion.	[2]
(iii)	Describe two ways by which confidence in the results could be improved.	[2]
(iv)	Name two abiotic factors that could affect the biodiversity in the river.	[1]
•••••		

(d) Another investigation focussed on the abundance of two plant species in the country park; the round-leaved sundew (*Drosera rotundifolia*) and the wood anemone (*Anemone nemorosa*). The round-leaved sundew grows in both boggy and woodland habitats, whereas the wood anemone only grows in woodland habitats.

A belt transect was carried out across boggy ground and adjacent woodland. Quadrats $(0.5\,\text{m}\times0.5\,\text{m})$ were placed at 5 m intervals along the transect.

Image 1.5 shows the position of the transect and the percentage cover for the two different plant species in each quadrat. The percentage cover of each species is shown graphically in **Image 1.6**.

Image 1.5

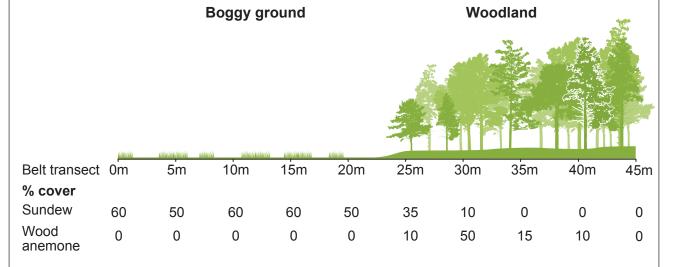
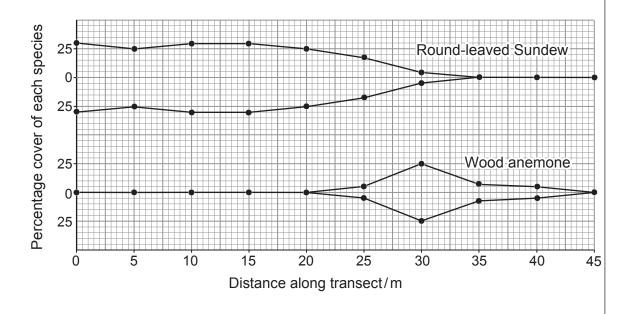



Image 1.6

© WJEC CBAC Ltd.

(ii) Describe one advantage of displaying the data in this way when comparing the distribution of different species. [1] (iii) Explain the trend in the percentage cover of the wood anemone between 30 and 45 metres along the transect. [1] (iv) The round-leaved sundew is able to survive in boggy ground, which has high levels of denitrification. It is an insectivorous plant which captures insects and digests them on its leaves as shown in Image 1.7. Image 1.7 Use the information provided to suggest how the ability of the round-leaved sundew to capture insects and digest them is an adaptation to its habitat. [3]	Image 1.6. [1] (ii) Describe one advantage of displaying the data in this way when comparing the distribution of different species. [1] (iii) Explain the trend in the percentage cover of the wood anemone between 30 and 45 metres along the transect. [1] (iv) The round-leaved sundew is able to survive in boggy ground, which has high levels of denitrification. It is an insectivorous plant which captures insects and digests them on its leaves as shown in Image 1.7. Image 1.7 Use the information provided to suggest how the ability of the round-leaved			
(iii) Explain the trend in the percentage cover of the wood anemone between 30 and 45 metres along the transect. (iv) The round-leaved sundew is able to survive in boggy ground, which has high levels of denitrification. It is an insectivorous plant which captures insects and digests them on its leaves as shown in Image 1.7. Image 1.7 Use the information provided to suggest how the ability of the round-leaved	(iii) Explain the trend in the percentage cover of the wood anemone between 30 and 45 metres along the transect. (iv) The round-leaved sundew is able to survive in boggy ground, which has high levels of denitrification. It is an insectivorous plant which captures insects and digests them on its leaves as shown in Image 1.7. Image 1.7 Use the information provided to suggest how the ability of the round-leaved	(i)		
(iv) The round-leaved sundew is able to survive in boggy ground, which has high levels of denitrification. It is an insectivorous plant which captures insects and digests them on its leaves as shown in Image 1.7. Image 1.7 Use the information provided to suggest how the ability of the round-leaved	(iv) The round-leaved sundew is able to survive in boggy ground, which has high levels of denitrification. It is an insectivorous plant which captures insects and digests them on its leaves as shown in Image 1.7. Image 1.7 Use the information provided to suggest how the ability of the round-leaved	(ii)		[1]
levels of denitrification. It is an insectivorous plant which captures insects and digests them on its leaves as shown in Image 1.7. Image 1.7 Use the information provided to suggest how the ability of the round-leaved	levels of denitrification. It is an insectivorous plant which captures insects and digests them on its leaves as shown in Image 1.7. Image 1.7 Use the information provided to suggest how the ability of the round-leaved	(iii)		
Use the information provided to suggest how the ability of the round-leaved	Use the information provided to suggest how the ability of the round-leaved	(iv)	levels of denitrification. It is an insectivorous plant which captures insects and	
Use the information provided to suggest how the ability of the round-leaved sundew to capture insects and digest them is an adaptation to its habitat. [3]	Use the information provided to suggest how the ability of the round-leaved sundew to capture insects and digest them is an adaptation to its habitat. [3]		Image 1.7	
			Use the information provided to suggest how the ability of the round-leaved sundew to capture insects and digest them is an adaptation to its habitat.	[3]
			Use the information provided to suggest how the ability of the round-leaved sundew to capture insects and digest them is an adaptation to its habitat.	[3]

Turn over. (1400U50-1E) © WJEC CBAC Ltd.

2. **Image 2.1** shows a photomicrograph of a transverse section of an artery viewed through a light microscope. **Image 2.2** shows a low power plan of this artery.

Image 2.1

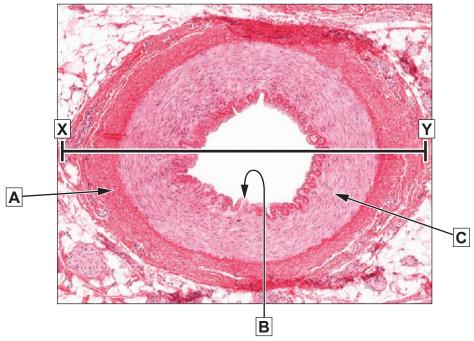
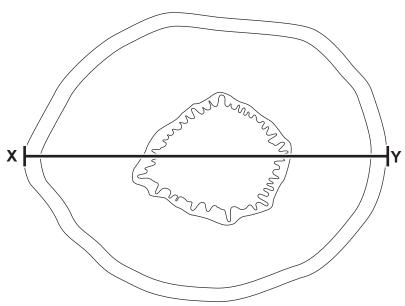



Image 2.2

(a)	/:\	Ctata tha name	of tionuna A		shown in Image 2.1 .	IO.
(21)	(1)	State the name		Bano G	Shown in image / 1	1/

Δ.

B.

C:

© WJEC CBAC Ltd. (1400U50-1E)

Examiner only

		END OF PAPER
(c)		ain why a light microscope would not be suitable to observe cell organelles such as ochondrion.
(b)	Desc	cribe one way in which the structure of a vein would differ from that of an artery. [1]
		Magnification of the low power plan = x
	(iv)	Use your answer from (iii) to calculate the magnification of the low power plan of the artery shown in Image 2.2 . [2]
		Size of the artery = mn
	(iii)	The distance between X and Y in Image 2.1 was measured as 88 eyepiece units. Using your answer from (ii), calculate the size of the artery on the slide. Give your answer in millimetres. [2]
		1 eyepiece unit =μn
		Give your answer in micrometres. [2]
		Calculate the length of one eyepiece unit when each stage micrometer unit = 0.01 mm.
		100 stage micrometer units = 40 eyepiece units.
	(ii)	Before viewing the T.S. artery, the light microscope was calibrated. The following values were observed:

(1400U50-1E)

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

